

#### 24th ICAS CONGRESS Yokohama - Japan

August 29 - September 3, 2004

# " PERSPECTIVES of FUTURE DEVELOPMENTS of VERTICAL FLIGHT " The Point of View of Industry

Author: A. Caporaletti CEO of AGUSTAWESTLAND Company



#### SUMMARY

- 1. The roles of Vertical Flight
- 2. Limitation of the helicopter
- 3. The two solutions
  - > The advanced helicopter
  - > The Tiltrotor
- 4. The Industry Goals
- 5. The Advanced Technologies
- 6. From technologies to product
- 7. AGUSTA: the Future has began
  - The AB139
  - The BA609

# AGUSTA

# **1. The roles of Vertical Flight**





#### THE ROLES OF VERTICAL FLIGHT

#### UNIQUE ABILITIES OF THE HELICOPTERS

- Hovering
- Take-Off and Landing in a restricted area, not prepared terrains and with obstacles









#### THE ROLES OF VERTICAL FLIGHT

#### **Increasing demand :**

- Transport of people and materials
- Point to point connection (VIP, corporate...)
- Offshore
- Short range transport
- Search & Rescue
- Military air mobility (Peace keeping)
- Security









# 2. Limitations of the helicopter





#### **LIMITATIONS OF THE HELICOPTER**

- Low productivity
  - ⇒ Low speed
  - ⇒ high operating costs
- Environmental impact





- ⇒ Noise
- ⇒ Pollution
- Public acceptance
- No rules in the ATM



AGUSTA



# 3. The two solutions ➢ The advanced helicopter ➢ The Tiltrotor





#### **THE TWO SOLUTIONS**

#### **PERSPECTIVE OF FUTURE DEVELOPMENT**

OF VERTICAL FLIGHT



AGUSTA



#### **Helicopter Evolution**

- All Weather
- More performing
- Quieter
- Safer
- More comfortable
- Low pollution

Hovering

#### **TILTROTOR**

- Breakthrough Technologies
- High productivity
- High speed
- High versatility

Speed Range Cruise



#### **INDUSTRY GOALS**





24th Icas Congress, Yokohama, Japan. August 29th – September 3rd, 2004

## **5. The Advanced Technologies**





#### **ADVANCED TECHNOLOGY SOLUTIONS**

The technology solutions play an important role to achieve the industry goal... SIMULATIONS









24th Icas Congress, Yokohama, Japan. August 29th - September 3rd, 2004

AGUSTA

DYNAMICS



#### **ADVANCED TECHNOLOGY SOLUTIONS: <u>AERODYNAMICS</u>**

- Higher Rotor efficiency (hover/forward flight)
  - higher payload
  - higher productivity
- Full Navier-Stokes codes
  - noise reduction
  - rotor/fuselage interaction
- Enhancement of the Wind Tunnel tests
  - active flow control
  - active fiber composite
  - study of new configurations (T/R)







24th Icas Congress, Yokohama, Japan. August 29th - September 3rd, 2004

#### **ADVANCED TECHNOLOGY SOLUTIONS: DYNAMICS**



AGUSTA







- Active Rotor Control (flaps, twist, tip...)
  - reduction of rotor/fuselage vibration
  - reduction of noise
- Enhancement of the experimental tests
  - systems characterisation
- Vibration Monitoring Systems
  - > rotors, drive shafts...
- Stability enhancement
  - Study of new configurations (T/R)

24<sup>th</sup> Icas Congress, Yokohama, Japan. August 29<sup>th</sup> – September 3<sup>rd</sup>, 2004

#### **ADVANCED TECHNOLOGY SOLUTIONS: STRUCTURES**



...making compliance with the new stringent requirements:

✓ Crashworthiness

✓ Bird Strike

AGUSTA

✓ Engine disk burst impact









#### **ADVANCED TECHNOLOGY SOLUTIONS: SIMULATION**

- Development and validation of the flight mechanics codes
- Evaluation and improvement of the VTOL handling qualities
- Development of flight simulators with Pilot and hardware in the loop
  - Advanced control laws
  - Automatic emergency manoeuvres
  - load reduction







#### **ADVANCED TECHNOLOGY SOLUTIONS: AVIONICS**

#### **MAN-MACHINE INTERFACE**



# 6. From Technologies to product











The competitive performance diamond

An example: the AGUSTA A109

24th Icas Congress, Yokohama, Japan. August 29th - September 3rd, 2004

AGUSTA Collaboration Network

AGUSTA



24th Icas Congress, Yokohama, Japan. August 29th – September 3rd, 2004



2RIG **The European Advanced Tiltrotor** 





24th Icas Congress, Yokohama, Japan. August 29th - September 3rd, 2004

AGUSTAWESTLAND Company

# 7. AGUSTA: the Future has began



24<sup>th</sup> Icas Congress, Yokohama, Japan. August 29<sup>th</sup> – September 3<sup>rd</sup>, 2004



|    | SUGGESTED LONG RANGE VTOL TECHNOLOGY GOALS<br>G.Price, "Prospects for the future of the Vertical Flight",<br>AIAA/ICAS "The Next 100 Years", 14-17 July 2003, Dayton, Ohio |                                     |                                                 |                               |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|-------------------------------|--|
|    | ATTRIBUTE                                                                                                                                                                  | CURRENT LEVEL                       | AGUSTA TODAY                                    | 2022 TARGET                   |  |
|    | VEHICLE<br>EFFICIENCY                                                                                                                                                      | Hover = 0.78                        | 0.8                                             | 0.87                          |  |
|    |                                                                                                                                                                            | L/D x Prop. Eff. = 7<br>at V cruise | 10                                              | 13                            |  |
|    | CRUISE SPEED                                                                                                                                                               | Helicopter = 170 Kts                | 180 Kts                                         | 200 Kts                       |  |
|    |                                                                                                                                                                            | Tiltrotor = 250 Kts                 | 275 Kts                                         | 350-400 Kts                   |  |
|    | EXTERNAL NOISE                                                                                                                                                             | FAA Requirements                    | -3 dB below req.                                | 60% Reduction                 |  |
|    | COCKPIT<br>INTEGRATION                                                                                                                                                     | Pilot Aiding                        | Pilot behaviour<br>integrated in the<br>machine | Operator "directs"<br>vehicle |  |
| ST | ALL-WEATHER                                                                                                                                                                | Limited Icing<br>Capability         | FULL ICING<br>(EH101)                           | No-Restriction to icing       |  |

AGU

AGUSTA





**BA609** 

#### **AB139**



24th Icas Congress, Yokohama, Japan. August 29th – September 3rd, 2004



# The AB139





#### **Commercial Helicopter derived from the Military A149**

- ENGINES: P&WC PT6C-67C
- ENGINES CONTROLED BY FADEC
- WEIGHT 6 ton
- PAYLOAD 2.5 ton
- SPEED 167 kts
- RANGE >400 nm





24<sup>th</sup> Icas Congress, Yokohama, Japan. August 29<sup>th</sup> – September 3<sup>rd</sup>, 2004





Primary structure of aluminum alloy and nomex/aluminum panels.

Fiber composite material are used for the secondary structure.

AGUSTA

## Better fuel tanks position

- High space in the cabin
- Better lift/drag ratio
- Better crashworthiness characteristic
- light weight
- Passenger cabin floor low over the ground for easy loading and unloading



# MAIN ROTOR

Aerodynamically and dynamically optimised

# TAIL ROTOR



#### **Canted:**

> Shorter mast

> higher performance



24<sup>th</sup> Icas Congress, Yokohama, Japan. August 29<sup>th</sup> – September 3<sup>rd</sup>, 2004



#### **Avionics System**

Primus Epic<sup>TM</sup> Avionics System (Honeywell)

#### **Electronic Display System**

- ✓ Navigation and Engine data
- ✓ Systems parameters
- ✓ Caution, warning and advisory annunciation
- ✓ Windows-style Operating System
- ✓ Voice Command System

AGUSTA

✓ Central Maitenance Computer







# Performance





24th Icas Congress, Yokohama, Japan. August 29th – September 3rd, 2004

AGUSTA







24th Icas Congress, Yokohama, Japan. August 29th – September 3rd, 2004



# The BA609







#### Capacities

| Crew                         | 1-2             |
|------------------------------|-----------------|
| Passengers seats             | 6-9             |
| Baggage comp. Volum          | e 1.42 $m^3$    |
| Propulsio                    | n               |
| Т <b>wo P&amp;W PT6C-67A</b> | (1940 Shp each) |
| Weights & dim                | iensions        |
| Max take off weight          | 7250 kg         |
| Empty woight                 | 1760 kg         |

| Max take off weight   | 7250 kg |
|-----------------------|---------|
| Empty weight          | 4760 kg |
| Useful load           | 2500 kg |
| <b>Rotor Diameter</b> | 7.9 m   |

#### Performance

| Max Cruise Speed | 275 kts |
|------------------|---------|
| Max Range        | 750 nm  |
| Cruise Altitude  | 7620 m  |



## AGUSTA





24<sup>th</sup> Icas Congress, Yokohama, Japan. August 29<sup>th</sup> – September 3<sup>rd</sup>, 2004



### **Nacelle tilting mechanism**

- Satisfy severe safety requirements
- Double telescoping ballscrews
- Interconnecting shaft
- Angular displacement transducer



#### **Rotor System**

- 3 blades
- optimal twist for hover and cruise
- gimbal joint
- different elastomeric components
- deicing system







## **Drive System**

- Interconnecting shaft
- Drive of both rotors in case of engine failure
- No asymmetric flight or controls





24<sup>th</sup> Icas Congress, Yokohama, Japan. August 29<sup>th</sup> – September 3<sup>rd</sup>, 2004



# **Flight Control System**

- Core of the BA609
- Fly-by-wire

AGUST

- ✓ minimise pilot workload
- $\checkmark$  satisfy handling qualities req.
- Conversion from H/M to A/M and reverse
- Conventional helicopter cockpit controls
- Triplex flight control computers





- Control laws fully tested through Pilot-inthe-loop flight simulation techniques.
- Thousands of virtual maneuvers
- 3 dedicated simulators with pilots and harware in the loop
- optimised handling qualities of the aircraft
- tested all possible failures and emergency procedures.



#### CONCLUSIONS

- In the airspace future, the vertical flight will have a greater importance than today
- > The goals of the rotorcraft industry are to integrate the technology into business
- AGUSTA, with the two last products, the AB139 and the BA609, has begun the future
- Finmeccanica, the AGUSTA shareholder, has decided to strengthen the helicopter sector as one of its main core business
- Finmeccanica announced the agreement with GKN for the acquisition of the latter's 50% shareholding in AgustaWestland.
- Agusta will benefit of greater resources to reinforce its position to stay in the forefront of the vertical flight business of the two guiding avenues of both the conventional helicopter and the revolutionary Tilt-Rotor.

